
Chapter 11: Classes

Blobs with Class

It always annoys me how books on C++ introduce classes with silly titles like “a touch of
class”. Ironically, I was bitten by the same bug so I had to do my own variant on it.

A structure variable is a blob of data made up of multiple parts, member variables. C++
also contains a more advanced version of a structure known as a class. A variable created
from a class is known as an instance of a class, class instance, or object. Sometimes
people go so far as to heave out “an object instance of class X” where ‘X’ is the name of
some class. Regardless, most people just call instances of classes, objects1.

Structures themselves are blue prints for creating a variable based on the structure. The
same is true with classes. A class is a blue print for creating an object. The object is an
instance of the class. A 1986 Honda Accord LX is an instance of the 1986 Honda Accord
LX plan. You can have multiple cars of this type, but you only have that one type, that
one plan.

Blue prints in the form of classes are more complex than that of structures. Not only does
it contain member variables, but member functions. Members of classes, be them
variables or functions, are also assigned access modifiers. There is also the possibility of
static members which are to classes as global variables are to your entire program; i.e. it
is a piece of data that is shared between all instances of the class. Inheritance is also a
possibility in classes, which is where a class inherits members of a base class. And all of
this confusion I am going to unravel for you.

Simple Declaration and Usage

Coding a class is designing a blue print for the objects that will be instances of your class
and looks much like the declaration for a structure. An instance, really, is just something
that has been created from some sort of plan. All of your simple variables and structures
up to this point are instances of their type:

int x;

In the above code, ‘x’ is an instance of the ‘int’ type. The term “instance” is most often
used in conjunction with objects of classes, and I think you’ll see it used rarely outside of
that context.

A class declaration closely resembles a structure declaration except for the usage of the
keyword ‘class’ rather than ‘struct’. Below is an example class declaration:

1 Structure variables can also be known as objects.

class apple
{
public:
 int weight;
 int worms;
 int redness;
};

The member variables are declared as normal variables are and as member variables are
inside structures. The other change is the addition of ‘public:’ which sits atop all of the
member variables. This is known as an access modifier. Every member following an
access modifier label has that access type. Thus all of the member variables in the above
code are “public”; i.e. publicly accessible. Until this is further explored and explained,
all of the members will be public.

You can run through all of your old source code, replace ‘struct’ with ‘class’, and add
‘public:’ at the top of your declaration, and everything will still compile and work as you
expected. So to create an ‘apple’ object or instance of ‘apple’:

apple a;
a.weight = 10;
a.worms = 1;
a.redness = 2;

Creating and using an object is identical to that of a structure variable. Pointers will work
the same way where the member-through-pointer (->) operator is used:

apple *p = &a;
p->weight = 11;
p->worms = 0;
p->redness = 2;

Using a class is identical to that of using a structure like you’ve seen. All the same rules
apply.

Member Functions

Unlike you’ve done with structures, classes can contain member functions as well as
member variables. Prototyping a member function is identical to that of a normal
function except that it occurs within the class declaration2:

class apple
{
public:
 void eat(void);
 int weight;

2 The term ‘prototype’ is also used to mean ‘declaration’ for classes (class prototype), but I will avoid that
for clarity.

 int worms;
 int redness;
};

The prototype will “absorb” the access modifier labeled above it. Thus in the above class
declaration, the ‘eat()’ function is “public”. There are two ways, or rather two places,
to define a member function. It can be either inline, which is inside the class declaration,
or outline, which is outside the class declaration.

To define a member function as outline, you write its definition outside the class
declaration. In this method you must specify the class that the member function is a part
of. This is done by preceding the function name with the name of the class followed by
two colons (‘::’):

void apple::eat(void)
{
 cout << “Munch munch munch ... mmm” << endl;
}

Writing in the class name says that the function ‘eat()’ is a member function of ‘apple’
and that’s where its prototype exists.

Inline member functions are defined inside the body of the class declaration. When
defining an inline member function you do not need to prototype it and unlike outline
functions, you don’t have to specify the class:

class apple
{
public:
 void eat(void)
 {
 cout << “Munch munch munch ... mmm” << endl;
 }
 int weight;
 int worms;
 int redness;
};

There are some severe differences between inline and outline functions, but none of them
are syntactical. These differences affect performance more than anything, but there are
also some functional aspects. I will cover these at a later point.

Calling member functions is the same as with accessing a member variable. You specify
the object (instance of the class), follow with a period, and end with the name of the
function:

a.eat();

It is infeasible to call a member function without specifying the object. Do not try to use
the member function without an object or by using the class name:

eat(); // <-- won’t work
apple.eat(); // <-- won’t work

The reason a function is created as a member is to have implicit access to the object’s
member variables and functions. That is to say, a member function can use the member
variables of an object as if they had been declared locally:

void apple::show_redness(void)
{
 cout << “The redness of this apple is “ << redness << endl;
}

Member variables have “member scope” which is implicit visibility to member functions
and explicit visibility outside of that. For a programmer to use the variables of a class, or
a structure in fact, they must specify the object as well as the variable:

a.redness = 7;

The member variable has “member scope” because it is not accessible without specifying
the object that it is a part of. Member functions do not need to specify the object to
access a member variable because they are already within the same visibility, or scope.

Just as all ‘apple’ objects have ‘redness’ member variables, they all have ‘eat()’ member
functions as well. When you call ‘eat()’ on any instance of ‘apple’, that function
automatically has access to the member variables of that instance. Within the ‘eat()’
function, you can use the ‘redness’, ‘weight’, and ‘worms’ variables as if they had been
declared locally:

void apple::reset_vars(void)
{
 weight = 0;
 worms = 0;
 redness = 0;
}

The purpose and process of member functions are tied to the class, and instances of that
class, they are a part of. There are few (though some) reasons that a function should be a
member if it has no association with the other members of the class.

Function members of a class are implicitly available, just as variable members, to the
definition of member functions. Member functions of an object can be called without
specifying the object:

void apple::munch()
{
 eat();
}

To recap, the code within the body of a member function has implicit access to all
variables and functions that are members of the current object. When you create an
object and call a member function; that member function has implicit access to the
members within that selfsame object.

Constructors and Destructors

Because member variables cannot be initialized when they are declared, as normal
variables, classes provide the concept of constructors. A constructor is a function that is
called after an object has been created. It is primarily used for the initialization of
member variables.

There are many kinds of constructors, each for a different situation. When an object is
created for some reason, one of its constructors is called. A constructor is simply a
member function, with no return value, that is automatically called. They can be defined
inline or outline, like other member functions, but again they cannot have a return value.
All constructors of a class have the same name as the class, but varying parameters.

The most common is the default constructor, which is called when you create an object
like a normal variable without any parameters, as I have done many times above in my
examples of classes. The default constructor has no parameters. Therefore, the default
constructor of the class ‘apple’ would be prototyped as:

apple();

An outline definition of this function to initialize all member variables to zero would be:

apple::apple()
{
 cout << “Default constructing an apple” << endl;
 weight = 0;
 worms = 0;
 redness = 0;
}

Notice that, because it is a member function, it is within “member scope” and has implicit
access to all member variables. In my prototype and definition above I completely omit a
parameter list, but it is perfectly acceptable (and equivalent) to put ‘void’ there. You
should not, however, declare a constructor as returning ‘void’ because it may upset some
compilers. A constructor simply has no return value, not even ‘void’ (if that’s possible
… seems silly to me).

This default constructor would be automatically called when creating an object instance
of ‘apple’ as we have done:

apple a;

Copy constructors are a special breed of constructor that is called when an object is
created from an already existing object. This happens when you pass an object by value
to a function or when you create an object and initialize it to another pre-existing object:

apple a;
apple b = a;

In the above code the default constructor would be called for object ‘a’, and the copy
constructor for object ‘b’. A copy constructor is defined as taking a reference parameter
to an object of the current class. This stands to reason since the object must be initialized
to another object of the same type or class. A prototype for ‘apple’ would look like this:

apple(apple &);

A definition for this copy constructor might be defined as:

apple::apple(apple &src)
{
 cout << “Copy constructing an apple” << endl;
 weight = src.weight;
 worms = src.worms;
 redness = src.redness;
}

The reference is to the object that the current object is being initialized too. Far above
our ‘apple’ object ‘b’ would be initialized to ‘a’, so ‘a’ would be ‘src’ and ‘b’ would be
implicit. As I mentioned, the other way for a copy constructor to be called is when you
pass an object by value to a function:

void eat_apple(apple ap)
{
 ap.eat();
}

If you were to create an instance of ‘apple’ and pass it to the above function, the copy
constructor would be called. Passing by value means to make a copy of the value you are
passing in and using it within the function. So, the parameter ‘ap’ will be created when
the function is called and initialized to the object that is passed in. After the function
ends, ‘ap’ will go out of scope and be destroyed:

class a;
eat_apple(a);

The output of the above with our current default and copy constructors defined would be:

Default constructing an apple
Copy constructing an apple

Destructors are the opposite of constructors. They are called when the object is deleted,
but before the memory for it is actually removed. This gives the object the chance to do

clean up work. This point is practically moot at this point in your C++ programming, but
it’ll be useful later on. A destructor is a member function that has no parameters and no
return value. Its name is the name of the class preceeded by a tilde (‘~’). The destructor
prototype for ‘apple’ would be:

~apple();

We could define it for informational purposes as so:

apple::~apple()
{
 cout << “Destroying apple object” << endl;
}

For objects created locally, they will be destroyed when they go out of scope. So if you
created an ‘apple’ object in ‘main()’, it would be destroyed at the end of that function.
When the object is about to be destroyed, its destructor is called automatically.

Constructors and destructors cannot be called explicitly; they exist solely for automatic
initialization and cleanup of objects.

Author’s Preference: If you want to be able to call a constructor explicitly, just define
another member function that does all the work. Call that member function from within
your constructor and you can also call it explicitly whenever you want to.

Custom Constructors

It is possible to create a constructor that takes any amount and type of parameters. As
long as this constructor doesn’t amount to a single reference parameter of an object of the
same class, this would be a custom or explicit constructor. A constructor of this type is
only automatically called if the specified parameters are passed in when an object is
created.

For example, the ‘apple’ class might contain a constructor that allows the programmer to
specify a weight to be stored in the ‘weight’ member variable. This might be declared as:

apple(int);

We could define it to initialize the ‘weight’ member of our class like so:

apple(int new_weight)
{
 cout << “Weight constructing apple to “ << new_weight
 << endl;
 weight = new_weight;
 worms = 0;
 redness = 0;
}

In order for this constructor to be called, you would have to specify an ‘int’ value within
a parameter list (i.e. enclosed in parenthesis) when creating an ‘apple’ object. This is
done by placing the parameter list after the name of the new object:

apple a(10);

The output of this, bearing our custom “weight” constructor, would be:

Weight constructing apple to 10

Notice how specifying the constructor and its parameters is remarkably similar to calling
a function. A constructor is a function deep down so it shouldn’t be too surprising. In
fact, you can specify the default constructor by providing an empty parameter list:

apple a();
apple b;

Both of the above creation statements are identical. See, even though a class acts like it
is a normal variable type, it is still a complex one underneath. Creating ‘b’ makes the
‘apple’ class look more like a built-in type which some programmers strive for.

Custom constructors can contain any number of parameters as well as parameter defaults.
There is really no more examples I can give without being redundant; try creating some
constructors for you to experiment.

Initializing Member Variables

Member variables can be initialized in a special way within the constructor, which is
another thing that sets constructors apart from normal functions. To initialize member
variables without assignment within the constructor, follow the parameter list in the
definition with a single colon. After that list out each member variable you want to
initialize separated by a comma. Following the name of each variable you should have
an opening and closing parenthesis containing the initializer value:

apple::apple() : weight (0), worms (0), redness (0)
{
 cout << “Default constructing apple” << endl;
}

This allows you to initialize member variables before they can ever be used, much like
how local variables can be initialized when they are created. In essence, you are doing
the same thing here. The object is created and before anything else, the member
variables are initialized.

Inheritance

Members of a class can be inherited from a base class. In the hierarchy of inheritance, a
class that inherits from another class is a child or derived class. The class that a child
class inherits from is a parent or base class. A child class can use the members it declares
as well as the members declared in its parent.

It’s a little like your genes. Your dad has black hair and you inherit it from him. You
have your own attributes as well as those that you inherited from your parents.

The first step in utilizing inheritance is creating a base class. After that, declare the child
class and after the name of the class put a colon followed by the name of the parent class:

class child : parent

For example:

class fruit
{
public:
 int weight;
};

class apple : fruit
{
public:
 int worms;
 int redness;
};

The ‘apple’ class in the example above has three data members. The first two are
‘worms’ and ‘redness’ which it declares explicitly, and the other is ‘weight’ which it
inherits from ‘fruit’. An object created from ‘apple’ can use all three of these data
members. An object created from ‘fruit’ can only use ‘weight’ because that’s all that’s
been declared there and it doesn’t inherit from anything else:

apple a;
a.weight = 10;
a.worms = 0;

fruit f;
f.weight = 10;

Data isn’t the only thing that can be inherited, functions can as well. Remember that a
member function can only access members declared in the current class as well as any
derived classes. A member function will not be able to access members in a derived
class, because it can’t know what classes derive from the current one.

Make sure you keep the classes you declare separated in your mind. A base class will
know nothing about the class that inherits from it. Consider the ‘fruit’ class above; it

doesn’t know about ‘apple’, nor does it have any access to anything declared in it. All
‘fruit’ knows about is ‘fruit’ and any class that it derives from, which isn’t anything in
this case.

Base classes can be declared to take away redundant members. Declaring the class
‘orange’ and ‘apple’ with identical members would be a case of this redundancy.
However, you can declare ‘fruit’ and place all of the common members there and have
‘orange’ and ‘apple’ inherit from it:

class fruit
{
public:
 int weight;
};

class apple : fruit
{
public:
 int worms;
 int redness;
};

class orange : fruit
{
public:
 int orangeness;
};

Blarg.

Overloading

Members in a child class with the same name as another member, even a derived one, are
said to be overloaded. Only functions can be overloaded because they can be identified
uniquely not just by their name, but by the parameters they accept. Overloaded functions
must have different parameters than the functions they are overloading except when
overloading a derived function. The return value does not matter in the case of
overloading, because it does not have to be used so it is useless in determining which
function is being called.

For example, if you created two functions in ‘apple’ called ‘eat()’ and both took no
parameters, how would you know which one was being called? Even if the two functions
returned different value types, how would you know? The return value of functions does
not have to be utilized, so it is an unreliable way to distinguish two functions.
Parameters, on the other hand are very unique.

If one of our ‘eat()’ functions accepted and ‘int’ value and the other had ‘void’ for
parameters, it would be a simple matter to distinguish the two. When calling the function

‘eat()’, the caller would specify an ‘int’ parameter to use the first version or no
parameters to use the second:

a.eat(1); // call apple::eat(int)
a.eat(); // call apple::eat(void)

There can be any number of overloaded functions as long as their parameters warrant
sufficient uniqueness. This is a fairly gray area so treat overloading with care. Certain
variables like ‘int’ and ‘long’ are so similar that the compiler will likely not let you
overload a function based on them as differentiating parameters. In that case the
compiler will warn you with the word “ambiguous”. This fancy word simply means “too
similar to the point of being indistinguishable”. If you had two ‘eat()’ functions and one
took an ‘int’ while the other took a ‘long’, which one would be used when you called
‘eat(1);’?

Author’s Preference: Do not try overloading based on different integer types (‘int’ versus
‘long’, etc.), except for with ‘char’. Number literals are never interpreted by the compiler
as ‘char’ types and character literals are never interpreted as any other integer type. So
they are a safe distinction. Also, do not try to overload based on ‘double’ versus ‘float’
as it will likely cause ambiguity warnings.

When a base class provides a function, you can overload it in a derived class with the
same parameters. By this you are, in effect, “replacing” the base class function with one
of your own. A function on the immediate class is always used over a parent class’s
function. So, even if the function prototype is identical, it will not be ambiguous. The
immediate class’s function will be used.

Consider the ‘eat()’ function on ‘fruit’ if it contained methods to simply “consume”. An
overloaded function on ‘apple’ might want to do more than this, like “crunch” for
example. When you create an instance of ‘apple’ and call ‘eat()’, it will execute the
function to “crunch” which is more specific than simply to “consume”.

If your class has a default constructor, as does the class it inherits from, then it is
overloading the default constructor. Unless you specify to call the default constructor of
the parent class, it will never be called at all. The danger is that the base class may do
initialization of variables and because it is never called, the initialization never happens.

Initiating the base class’s constructor is the same as initializing a member variable in the
constructor. The name of the base class should follow the constructor name after a colon
or comma in the case of being part of a list of initializations. The parenthesis may
contain no parameters to call the default constructor or whatever parameters to specify
another custom constructor. Just as you would call a specific constructor by designating
certain parameters when creating an object, you would do the same when calling a base
class constructor.

So, if the ‘apple’ class constructor wanted to call the ‘fruit’ default constructor it might
do this:

apple::apple() : fruit()
{
 // constructor stuff.
}

But we mustn’t forget the initialization of the members of ‘apple’ class. The call to the
base constructor can be part of this list:

apple::apple() : redness(0), worms(0), fruit()
{
 // constructor stuff
}

If a custom ‘apple’ constructor was called to specify the ‘weight’ member, that would
need to be propagated up to the ‘fruit’ class; assuming that it also has a custom
constructor to accept a ‘weight’ value:

apple::apple(int new_weight) : redness(0), worms(0),
 fruit(new_weight)
{
 // constructor stuff
}

It is possible to overload functions outside of classes. These exist in a global scope,
rather than a class scope, but the same rules still apply. To overload a global function it
must differ by the amount and types of parameters, not the return value.

Class Namespaces

Declaring a class also creates a new namespace (see Chapter 4: Flow Control) under the
same name. Global and local namespaces have no names, ironically, but member
namespaces do. The name of the member namespace is that of the class the member is a
part of. Thus, the ‘redness’ member of ‘apple’ is within the ‘apple’ namespace.

If a class contains a member with the same identifier as a global one, you cannot use the
global one without specifying the global namespace using the scope operator. The name
of the global namespace is blank, so the expression is only the double-colon (scope
operator) followed by the identifier:

int redness = 5;
void apple::print_redness(void)
{
 cout << “member redness = “ << apple::redness << endl;
 cout << “global redness = “ << ::redness << endl;
}

When inside a member function, the implicit namespace is that of the class itself. By
implicit I mean that when you specify an identifier, the one in the class is used first

before the global one. So, in the example above, I could have removed ‘apple::’ from
output of the member ‘redness’ and it would still function the same.

The global namespace is cluttered quickly because of its uniqueness and using the scope
operator to specify it is quite common when inside member functions. Class namespace
is not usually specified within the same class because it is implicit. It is necessary though
if you want to use a member of the current class within a member function that contains a
local with the same name. Consider:

void apple::print_redness(void)
{
 int redness = 0;
 cout << “redness = “ << redness << endl;
}

Will the above code print the value of the member variable ‘redness’? No, the output
will always be:

redness = 0

This is because of the local variable ‘redness’. Local variables take precedence over all
namespaces unless otherwise specified. Thus, to force the output of the member
variable’s value over the local you would have to specify the class namespace:

void apple::print_redness(void)
{
 int redness = 0;
 cout << “redness = “ apple::redness << endl;
}

When a class inherits from another class, all of the identifiers from the parent class are
also present in the child class. If the ‘apple’ class inherits the ‘weight’ variable from the
‘fruit’ base class, then you can specify the ‘weight’ variable inside an ‘apple’ member
function by either of the following:

apple::weight
fruit::weight

It is known that since ‘apple’ inherits from ‘fruit’ that both of these refer to the ‘weight’
member that was inherited. However, if ‘apple’ defined its own ‘weight’ variable then
they would refer to two separate things. Specifying ‘apple::weight’ would refer to the
variable declared explicitly inside the ‘apple’ class; whereas ‘fruit::weight’ would refer to
the variable declared inside ‘fruit’ that apple inherited from.

Not specifying a namespace for a variable that exists in both the current class and the
base class will cause you to access the variable in the current class. When you declare a
variable for the current class you are basically putting it above all others. The only way
to access the other variables of the same name, be them global or base class members, is
to explicitly specify the namespace they belong to.

You can specify any namespace with the scope operator, but it will only work for the
ones you have access to. If you specify a member function under a class namespace that
is not affiliated with the current one in any way, it will fail3.

Although I have used variables in all of my examples, all of this holds true for functions
as well. The one exception is local functions which are not allowed. If you overload a
base class function, you can access with the base class namespace using the scope
operator. One reason for doing this is if the base class provides basic functionality that
your overloaded function extends upon. You could call the base class function at the end
of your overloaded function.

Static Members

Members that exist for all instances of a specific class are known as static members.
Static member variables act like global variables, but are limited to the scope of the class
they are declared in. They are much like the static variables of functions. They exist for
the duration of the program rather than being tied to the lifetime of a specific object.
Member functions can also be static, not just member variables. The unique thing about
static members is that they can be called by specifying the class, not necessarily an
instance of that class.

To declare any member, function or variable, as static, simply precede it by the keyword
‘static’ inside the class declaration:

class apple
{
public:
 static void print_count(void);
 static int count;
}

Nothing more needs to be done to the functions, but static member variables must now be
initialized. The initialization marks the variables definition. Whereas normal member
variables are defined when an object of the class is created, static member variables must
be explicitly initialized somewhere. This initialization must be somewhere in the global
scope, i.e. outside of any function.

The initialization of a static member variable looks like a normal variable declaration
except that the name of the variable is preceded by the class namespace and scope
operator:

int apple::count = 0;

3 Unless the member function of the other class is static.

A static member variable must be initialized and not simply declared outside of the class.
This gives the variable an initial value. Basically a static member is a global that exists
within a specific class namespace. So, to create it you need to declare it inside the class it
will be a part of an initialize it in the global namespace, but specifying the class
namespace the identifier is in.

As previously said, a static member variable, like any static member, is accessible
without specifying an object. Instead, you must specify the class namespace that the
static member is a part of using the scope operator. So, inside ‘main()’ if we were to
print the value of ‘count’ (inside ‘apple’) using ‘cout’, it might look like so:

cout << apple::count << endl;

We don’t need an instance because ‘count’ is really just a global variable that is under the
‘apple’ namespace umbrella. It is not tied to any particular object. Accessing ‘count’
through an object of ‘apple’ will yield the same result as accessing it with the class
namespace and scope operator:

apple a;
a.count == apple::count;

Because a static member belongs to no particular instance, static member functions can
not use non-static member variables, sometimes known as instance members. These
functions are the same as global ones except within the class scope. They have no
relation to the non-static member variables or functions within other than by being under
the same namespace umbrella.

Static member functions can, however, access static member variables of the same class
(or base classes) implicitly without needing the scope operator. This is because the
default scope inside a static member function is that of the current class:

void apple::print_count(void)
{
 cout << “There are “ << count << “ apples” << endl;
}

Author’s Suggestion: Using all static members you could create a class that simply
contains helper functions and variables. These helper functions are usable anywhere and
without an instance of the class, but they do not clutter the global namespace.

Access Modifiers

Labels within the class declaration, known as access modifiers, determine how members
beneath them can be accessed. There are three access levels that can be specified: public,
protected, and private. This first access level you’ve already used up to this point.

Public members can be accessed by anything. That is, they can be accessed from outside
the scope of the class. Protected and private members, on the other hand, can only be
accessed by functions acting within the class scope. Private members take it a step
further and only members of the current class have access. Private members are not
usable by derived classes. Privates are basically extreme versions of protected variables.

The default access modifier for all class members is private. That is, if you do not
specify ‘public:’ or ‘protected:’ (or ‘private:’), the default access level is private:

class apple
{
 int this_is_a_private_member;
public:
 int this_is_public;
};

Access is specified at the class level; i.e. per class not per object. That is, an object of
‘apple’ has access to the protected and private members of any other object of apple.
This goes for static member functions as well.

For example, the copy constructor of ‘apple’ is passed a reference to another object of
‘apple’. Inside this copy constructor you can access the current object’s protected and
private members, as well as the protected and private members of the reference passed in:

class apple
{
 int privatemember;
 apple(apple &src)
 {
 privatemember = src.privatemember;
 }
};

And even static member functions can access these v.i.m.’s (very important members).

Friends

Classes and functions can be declared as friends to a particular class. Simply put, a friend
has access to protected and private members. Friend declarations can be made anywhere
inside the class declaration. The syntax is as follows:

friend <identifier>;

So if you wanted to make the function ‘Eat()’ and the class ‘orange’ friends of ‘apple’, it
would look like so:

class apple
{

 friend Eat;
 friend orange;

 // other stuff in ‘apple’
};

A friend still has to access the members in the same way, the difference is that it is not
restricted to public members. So if you created an object of ‘apple’ and ‘weight’ was a
private variable, you wouldn’t be able to access it unless you were inside a friend
function or a member function of a friend class.

This

There is a special variable called ‘this’ which exists within the body of every non-static
(i.e. instance) member function. This variable, no pun intended, is a pointer of the
current class to the current object. You can use it as you would any other pointer, but you
cannot change it. It is a read-only variable.

The ‘this pointer’, as it is called, is used to refer to the current object for whatever
nefarious purposes you can conjure up. I promise that as you develop more advanced
programs in C++ you will find a purpose for using the ‘this pointer’. One reason might
be if you had a static member function that accepted a pointer of the current class as a
parameter. You could call that function and specify the current object using the ‘this
pointer’.

Since it is a pointer to the current object, you can use it to access members the same as
you would members of a structure:

void apple::print_redness(void)
{
 cout << “redness = “ this->redness << endl;
}

Remember that it exists implicitly inside every non-static member function.

Structures are Classes

Structures are actually identical to classes with one exception: members in structures
default to public rather than private. Thus you could replace every ‘class’ keyword in my
and your programs with ‘struct’ and nothing will change.

Author’s Preference: For simple compound data types that only have member variables
and no member functions, I use ‘struct’. For all data types that use anything other than
plain vanilla member variables, I use ‘class’. This trend is fairly common among other
programmers and purists will yank out your hair if you start using ‘struct’ instead of
‘class’ for anything else.

	Chapter 11: Classes
	Blobs with Class
	Simple Declaration and Usage
	Member Functions
	Constructors and Destructors
	Custom Constructors
	Initializing Member Variables
	Inheritance
	Overloading
	Class Namespaces
	Static Members
	Access Modifiers
	Friends
	This
	Structures are Classes

